
1

Real Time Programming
with Ada

Part 2: Real time facilities

Real Time Programming: we need support for

• Concurrency (Ada tasking)

• Communication & synchronization (Ada Rendezvous)

• Consistency in data sharing (Ada protected data type)

• Real time facilities (Ada real time packages and delay statements)

– accessing system time so that the passage of time can be measured

– delaying processes until some future time

– Timeouts: waiting for or running some action for a given time period

System Time

A timer circuit programmed to interrupt the processor at fixed rate.

– To approximate the universial time

– For distributed systems, we need clock synchronization

Each time interrupt is called a system tick (time resolution):

• Normally, the tick can vary 1-50ms, even microseconds in RTOS
– LegOS: 1ms

– Linux 2.4, 10ms (100HZ), Linux 2.6, 1ms (1000HZ)

• The tick may be selected by the user

• All time parameters for tasks should be the multiple of the tick

• System time = 32 bits

• One tick = 1ms: your system can run 50 days

• One tick = 20ms: your system can run 1000 days = 2.5 years

• One tick = 50ms: your system can run 2500 days= 7 years

• In Ada95, it is required that the system time should last at least 50 years

Real-Time Support in Ada

• Two pre-defined packages to access the system clock

– Ada.Calendar and Ada.Real_Rime

– Both based on the same hardware clock

• There are two delay-statements

– Delay time_expression (in seconds)

– Delay until time_expression

• The delay statements can be used together with select

to program timeouts, timed entry etc.

Package calendar in Ada: specification

package Ada.Calendar is

type Time is private;

--- time is pre-defined based on the system clock

subtype Year_Number is Integer range 1901 .. 2099;

subtype Month_Number is Integer range 1 .. 12;

subtype Day_Number is Integer range 1 .. 31;

subtype Day_Duration is Duration range 0.0 .. 86_400.0;

--- Duration is pre-defined type (length of interval,

--- expressed in sec’s) declared in the package: Standard

function Clock return Time;

function Year (Date : Time) return Year_Number;

function Month (Date : Time) return Month_Number;

function Day (Date : Time) return Day_Number;

function Seconds(Date : Time) return Day_Duration;

procedure Split (Date : in Time;

Year : out Year_Number;

Month : out Month_Number;

Day : out Day_Number;

Seconds : out Day_Duration);

Package calendar in Ada: specification (ctn.)

function Time_Of(Year : Year_Number;

Month : Month_Number;

Day : Day_Number;

Seconds : Day_Duration := 0.0)

return Time;

function "+" (Left : Time; Right : Duration) return Time;

function "+" (Left : Duration; Right : Time) return Time;

function "-" (Left : Time; Right : Duration) return Time;

function "-" (Left : Time; Right : Time) return Duration;

function "<" (Left, Right : Time) return Boolean;

function "<="(Left, Right : Time) return Boolean;

function ">" (Left, Right : Time) return Boolean;

function ">="(Left, Right : Time) return Boolean;

Time_Error : exception;

private

-- not specified by the language

-- implementation dependent

end Ada.Calendar;

2

Package Real_Time in Ada: specification
package Ada.Real_Time is

type Time is private;

Time_First : constant Time;

Time_Last : constant Time;

Time_Unit : constant := implementation-defined-real-number;

type Time_Span is private;

--- as Duration, a Time_Span value M representing

the length of an interval, corresponding to

the real time duration M*Time_Unit.

Time_Span_First : constant Time_Span;

Time_Span_Last : constant Time_Span;

Time_Span_Zero : constant Time_Span;

Time_Span_Unit : constant Time_Span;

Tick : constant Time_Span;

function Clock return Time;

function "+" (Left : Time; Right : Time_Span) return Time;

function "+" (Left : Time_Span; Right : Time) return Time;

function "-" (Left : Time; Right : Time_Span) return Time;

function "-" (Left : Time; Right : Time) return Time_Span;

function "<" (Left, Right : Time) return Boolean;

function "<="(Left, Right : Time) return Boolean;

function ">" (Left, Right : Time) return Boolean;

function ">="(Left, Right : Time) return Boolean;

Package Real_Time in Ada: specification (cnt.)
function "+" (Left, Right : Time_Span) return Time_Span;

function "-" (Left, Right : Time_Span) return Time_Span;

function "-" (Right : Time_Span) return Time_Span;

function "*" (Left : Time_Span; Right : Integer) return Time_Span;

function "*" (Left : Integer; Right : Time_Span) return Time_Span;

function "/" (Left, Right : Time_Span) return Integer;

function "/" (Left : Time_Span; Right : Integer) return Time_Span;

function "abs"(Right : Time_Span) return Time_Span;

function "<" (Left, Right : Time_Span) return Boolean;

function "<="(Left, Right : Time_Span) return Boolean;

function ">" (Left, Right : Time_Span) return Boolean;

function ">="(Left, Right : Time_Span) return Boolean;

function To_Duration (TS : Time_Span) return Duration;

function To_Time_Span (D : Duration) return Time_Span;

function Nanoseconds (NS : Integer) return Time_Span;

function Microseconds (US : Integer) return Time_Span;

function Milliseconds (MS : Integer) return Time_Span;

type Seconds_Count is range implementation-defined;

procedure Split(T : in Time; SC : out Seconds_Count;

TS : out Time_Span);

function Time_Of(SC : Seconds_Count; TS : Time_Span) return Time;

private

... -- not specified by the language

end Ada.Real_Time;

Programming Delays

Relative Delays

• Delay the execution of a task for a given period

• Relative delays (using clock access)

Start := Clock;

loop

exit when (Clock - Start) > 10.0; -- bust waiting

end loop;

ACTION;

• To avoid busy-waiting, most languages and OS provide

some form of delay primitive

– In Ada, this is a delay statement delay 10.0

– In UNIX, sleep(10)

Semantics of Delay(20); Action

Time specified by

program

Granularity

difference

between

clock and

delay

Interrupts

disabled

Ready to run here

but not

schedulled

Executing the

Action

Time

20 sec

Absolute Delays

• To delay the execution of a task to a specified time
point (using clock access):

Start := Clock;

FIRST_ACTION;

loop

exit when Clock > Start+10.0; -- busy waiting

end loop;

SECOND_ACTION;

• To avoid busy-wait (access “clock” all time every tick!):

START := Clock;

FIRST_ACTION;

delay until START + 10.0; (this is by interrupt)

SECOND_ACTION;

• As with delay, delay until is accurate only in its lower bound

3

Absolute Delays: Example

task Ticket_Agent is

entry Registration(...);

end Ticket_Agent;

task body Ticket_Agent is

-- declarations

Shop_Open : Boolean := True;

begin

while Shop_Open loop

select

accept Registration(...) do

-- log details

end Registration;

or

delay until Closing_Time;

Shop_Open := False;

end select;

-- process registrations

end loop;

end Ticket_Agent;

Periodic Task

task body Periodic_T is

Next_Release : Time;

ReleaseInterval : Duration := 10

begin

Next_Release := Clock + ReleaseInterval;

loop

-- Action

delay until Next_Release;

Next_Release := Next_Release + ReleaseInterval;

end loop;

end Periodic T;

Will run on average

every 10 seconds

local drift only

If Action takes 11 seconds, the delay

statement will have no effect

Control Example I

with Ada.Real_Time; use Ada.Real_Time;

with Data_Types; use Data_Types;

with IO; use IO;

with Control_Procedures;

use Control_Procedures;

procedure Controller is

task Temp_Controller;

task Pressure_Controller;

Control Example II

task body Temp_Controller is

TR : Temp_Reading; HS : Heater_Setting;

Next : Time;

Interval : Time_Span := Milliseconds(30);

begin

Next := Clock; -- start time

loop

Read(TR);

Temp_Convert(TR,HS);

Write(HS);

Write(TR);

Next := Next + Interval;

delay until Next;

end loop;

end Temp_Controller;

Control Example III

task body Pressure_Controller is

PR : Pressure_Reading; PS : Pressure_Setting;

Next : Time;

Interval : Time_Span := Milliseconds(70);

begin

Next := Clock; -- start time

loop

Read(PR);

Pressure_Convert(PR,PS);

Write(PS);

Write(PR);

Next := Next + Interval;

delay until Next;

end loop;

end Pressure_Controller;

begin

null;

end Controller;

Control Example IIII

task body Pressure_Controller is

PR : Pressure_Reading; PS : Pressure_Setting;

Next : Time;

Interval : Time_Span := Milliseconds(70);

begin

Next := Clock; -- start time

loop

Read(PR);

Pressure_Convert(PR,PS);

Write(PS);

Write(PR);

Next := Next + Interval;

delay until Next;

end loop;

end Pressure_Controller;

begin

null;

end Controller;

Here Temp_Controller

& Pressure_Controller

start concurrently

4

Programming Timeouts

Timeout and message passing

loop

select

accept Call(T : temperature) do

New_temp:=T;

end Call;

or

delay 10.0;

--action for timeout

end select;

--other actions

end loop;

Timeout (by server)

task Server is

entry Call(T : in Temperature);

-- other entries

end Server;

task body Server is

-- declarations

begin

loop

select

accept Call(T : in Temperature) do

New_Temp := T;

end Call;

or

delay 10.0;

-- action for timeout

end select;

-- other actions

end loop;

end Server;

Timeout (by client)

loop

-- get new temperature T

Server.Call(T);

end loop;

loop

-- get new temperature T

select

Server.Call(T);

or

delay 0.5;

-- other actions

end select;

end loop;

Timeouts on Entries

• The above examples have used timeouts on inter-task

communication; it is also possible, within Ada, to do

timed (and conditional) entry call on protected objects

select

P.E ; -- E is an entry in protected object P

or

delay 0.5;

end select;

Timeouts on Actions

select

delay 0.1;

then abort

-- action

end select;

• If the action takes too long, the triggering event

will be taken and the action will be aborted

• This is clearly an effective way of catching run-

away code --- Watchdag

5

SUMMARY: Language support for RT Programming

• Concurrency: multi-tasking

• Communication & synchronization

• Consistency in data sharing /protected data types

• Real time facilities

– Access to system clock/time

– Delay constructs: Delay(10) and Delay until next-time

– Timely execution of tasks (run-time system)

The ”core” of RT Programming Languages

• Primitive Types
– Basic Types: e.g. Integers, reals, lists, ...

– Abstract data type: Semaphore
• P(S)

• V(S)

• Assignment: X:= E
• Control Statements: If, While, ..., goto

• Sequential composition: P;P
• Concurrent composition: P|| P
• Communication: a!e, a?x

• Choice: P or P
• Clock reading: Time
• Delays: Delay(n), Delay until n

• Exception: Loop P until B

RT Programming Languages

• ”Classic” high-level languages with RT extensions e.g.
– Ada

– Real-Time Java, C + RTOS

– SDL, Soft RT language for telecommunication systems

• Synchronous Programming (from 1980’s)
– Esterel (Gerard Berry)

– Lustre (Caspi and Halbwachs)

– Signal (le Guernic and Benveniste)

• Design, Modeling, Validation, and Code Generation
(from models to code)

– Giotto (Henzinger et al, not quite synchrnous)

– UPPAAL/TIMES (Uppsala)

– Real-Time UML

– SimuLink

RT Programming Languages

• ”Classic” high-level languages with RT extensions e.g.

– Ada, Real-Time Java, C + RTOS

– SDL, Soft RT language for telecommunication systems

• Synchronous Programming

– Esterel (Gerard Berry)

– Lustre (Caspi and Halbwachs)

– Signal (le Guernic and Benveniste)

• Towards Real Real-Time Programming (mostly in

research):

– Giotto (Henzinger et al, not quite synchrnous)

– TIMES (Uppsala)

The History of Computer Science:

Lifting the Level of Abstraction

The “assembly age”:

Programming with focus on the
platform

High-level languages:

Programming with focus on the
application Compilation:

perhaps “the” success

story of computer science

The History of Computer Science:

Lifting the Level of Abstraction

The “assembly age”:

Programming with focus on the
platform

High-level languages:

Programming with focus on
the application

Automatic program synthesis:

No more programming but
focusing on the
Problem/Specification

Compilation:
perhaps “the” success

story of computer science

Code generation

from specifications:
still mostly a dream

6

Future Goal in Real-Time Software Development

Efficient code

(scheduled by RTOS)

Mathematical models

(e.g. Simulink in Matlab)

Code

verification
difficult

Code

generation
difficult

Harware

e.g. Esterel

(different platforms)

e.g. Giotto

(e.g. UML based tools)

